Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Vet Sci ; 11(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38668407

ABSTRACT

Epigenetic factors, including microRNAs (miRNAs), play an important role in affecting gene expression and, therefore, are involved in various biological processes including immunity protection against tumors. Marek's disease (MD) is a highly contagious disease of chickens caused by the MD virus (MDV). MD has been primarily controlled by vaccinations. MD vaccine efficacy might, in part, be dependent on modulations of a complex set of factors including host epigenetic factors. This study was designed to identify differentially expressed miRNAs in the primary lymphoid organ, bursae of Fabricius, in response to MD vaccination followed by MDV challenge in two genetically divergent inbred lines of White Leghorns. Small RNA sequencing and bioinformatic analyses of the small RNA sequence reads identified hundreds of miRNAs among all the treatment groups. A small portion of the identified miRNAs was differentially expressed within each of the four treatment groups, which were HVT or CVI988/Rispens vaccinated line 63-resistant birds and line 72-susceptible birds. A direct comparison between the resistant line 63 and susceptible line 72 groups vaccinated with HVT followed by MDV challenge identified five differentially expressed miRNAs. Gene Ontology analysis of the target genes of those five miRNAs revealed that those target genes, in addition to various GO terms, are involved in multiple signaling pathways including MAPK, TGF-ß, ErbB, and EGFR1 signaling pathways. The general functions of those pathways reportedly play important roles in oncogenesis, anti-cancer immunity, cancer cell migration, and metastatic progression. Therefore, it is highly likely that those miRNAs may, in part, influence vaccine protection through the pathways.

2.
Front Vet Sci ; 11: 1374430, 2024.
Article in English | MEDLINE | ID: mdl-38681855

ABSTRACT

N6-methyladenosine (m6A) methylation is an internal post-transcriptional modification that has been linked to viral multiplication and pathogenicity. To elucidate the conservation patterns of potential 5'-DRACH-3' motifs in avian leukosis virus subgroup J (ALV-J), 149 ALV-J strains (139 isolates from China; ALV-J prototype HPRS-103 from the UK; and 9 strains from the USA, Russia, India, and Pakistan) available in GenBank before December 2023 were retrieved. According to the prediction results of the SRAMP web-server, these ALV-J genomes contained potential DRACH motifs, with the total number ranging from 43 to 64, which were not determined based on the isolation region and time. Conservative analysis suggested that 37 motifs exhibited a conservation of >80%, including 17 motifs with a grading above "high confidence." Although these motifs were distributed in the U5 region of LTRs and major coding regions, they were enriched in the coding regions of p27, p68, p32, and gp85. The most common m6A-motif sequence of the DRACH motif in the ALV-J genome was GGACU. The RNA secondary structure of each conserved motif predicted by SRAMP and RNAstructure web-server was mainly of two types-A-U pair (21/37) and hairpin loop (16/37)-based on the core adenosine. Considering the systematic comparative analysis performed in this study, future thorough biochemical research is warranted to determine the role of m6A modification during the replication and infection of ALV-J. These conservation and distribution analysis of the DRACH motif for potential m6A sites in ALV-J would provide a foundation for the future intervention of ALV-J infection and m6A modification.

3.
Microorganisms ; 12(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38674684

ABSTRACT

Subgroup J avian leukemia virus (ALV-J) and chicken infectious anemia virus (CIAV) are widely acknowledged as significant immunosuppressive pathogens that commonly co-infect chickens, causing substantial economic losses in the poultry industry. However, whether co-infection of ALV-J and CIAV have synergistic pathogenicity remains uncertain. To explore their synergistic pathogenesis, we established a co-infection model of ALV-J and CIAV in HD11 cells and specific-pathogen-free (SPF) chickens. We discovered that ALV-J and CIAV can synergistically promote the secretion of IL-6, IL-10, IFN-α, and IFN-γ and apoptosis in HD11 cells. In vivo, compared to the ALV-J and CIAV mono-infected group, the mortality increased significantly by 27% (20 to 47%) and 14% (33 to 47%) in the co-infected group, respectively. We also discovered that ALV-J and CIAV synergistically inhibited weight gain and exhibited more severe organ damage in co-infected chickens. Furthermore, we found that CIAV can promote the replication of ALV-J in HD11 cells and significantly enhance ALV-J viral load in blood and tissues of co-infected chickens, but ALV-J cannot promote the replication of CIAV. Moreover, by measuring the immune organ indexes and proportions of blood CD3+CD4+ and CD3+CD8+ lymphocytes, more serious instances of immunosuppression were observed in ALV-J and CIAV co-infected chickens than in mono-infected chickens. Taken together, our findings demonstrate that ALV-J and CIAV synergistically enhance pathogenicity and immunosuppression.

4.
Vet Q ; 44(1): 1-8, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38595267

ABSTRACT

Gyrovirus galga1 (GyVg1), a member of the Anelloviridae family and Gyrovirus genus, has been detected in chicken and human tissue samples. In this study, the DNA of GyVg1-related gyroviruses in the sera of six dogs and three cats from Central and Eastern China was identified using PCR. Alignment analysis between the nine obtained and reference GyVg1 strains revealed that the genome identity ranged from 99.20% (DOG03 and DOG04 strains) to 96.17% (DOG01 and DOG06 strains). Six recombination events were predicted in multiple strains, including DOG01, DOG05, DOG06, CAT01, CAT02, and CAT03. The predicted major and minor parents of DOG05 came from Brazil. The DOG06 strain is potentially recombined from strains originating from humans and cats, whereas DOG01 is potentially recombined from G17 (ferret-originated) and Ave3 (chicken-originated), indicating that transmissions across species and regions may occur. Sixteen representative amino acid mutation sites were identified: nine in VP1 (12 R/H, 114S/N, 123I/M, 167 L/P, 231 P/S, 237 P/L, 243 R/W, 335 T/A, and 444S/N), four in VP2 (81 A/P, 103 R/H, 223 R/G, and 228 A/T), and three in VP3 (38 M/I, 61 A/T, and 65 V/A). These mutations were only harbored in strains identified in dogs and cats in this study. Whether this is related to host tropism needs further investigation. In this study, GyVg1 was identified in the sera of dogs and cats, and the molecular characteristics prompted the attention of public health.


Subject(s)
Cat Diseases , Dog Diseases , Gyrovirus , Animals , Cats , Dogs , Humans , Ferrets , Gyrovirus/genetics , Chickens , Phylogeny
5.
Poult Sci ; 103(6): 103671, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38569240

ABSTRACT

N6-methyladenosine (m6A) methylation in transcripts has been suggested to influence tumorigenesis in liver tumors caused by the avian leukosis virus subgroup J (ALV-J). However, m6A modifications during ALV-J infection in vitro remain unclear. Herein, we performed m6A and RNA sequencing in ALV-J-infected chicken fibroblasts (DF-1). A total of 51 differentially expressed genes containing differentially methylated peaks were identified, which were markedly enriched in microRNAs (miRNAs) in cancer cells as well as apoptosis, mitophagy and autophagy, RNA degradation, and Hippo and MAPK signaling pathways. Correlation analysis indicated that YTHDC1 (m6A-reader gene) plays a key role in m6A modulation during ALV-J infection. The env gene of ALV-J harbored the strongest peak, and untranslated regions and long terminal repeats also contained peaks of different degrees. To the best of our knowledge, this is the first thorough analysis of m6A patterns in ALV-J-infected DF-1 cells. Combined with miRNA profiles, this study provides a useful basis for future research into the key pathways of ALV-J infection associated with m6A alteration.

6.
Vet Sci ; 11(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38535856

ABSTRACT

Among broilers, the main pathogen that leads to swollen head syndrome (SHS) is the subgroup C avian metapneumovirus (aMPV-C). The aMPV-C infection can lead to an upsurge in the rate of soft-shell eggs, resulting in reduced egg production and seriously affecting the economy of the livestock industry. Therefore, a rapid method for aMPV-C detection needs to be invented. According to the N gene of aMPV-C, we designed the specific probe and primer and created a reverse transcription recombinase-aided amplification assay (RT-RAA) for the detection of aMPV-C. aMPV-C could be detected quickly and specifically by this method at 41 °C for 30 min. The sensitivity assay inferred that the minimum detection threshold of RT-RAA was 3.38 × 101 copies/µL. A specificity assay showed that the RT-RAA method did not cross-react with other subgroups (aMPV-A, aMPV-B, aMPV-D) or other viruses (H9N2, NDV, IBV, IBDV). Forty samples of known clinical background were tested by RT-RAA and RT-qPCR. The two approaches had a 100% correlation rate. In conclusion, this research successfully created an RT-RAA assay for aMPV-C.

7.
J Hazard Mater ; 468: 133831, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38402684

ABSTRACT

Microorganisms, especially viruses, cause disease in both humans and animals. Environmental chemical pollutants including microplastics, pesticides, antibiotics sand air pollutants arisen from human activities affect both animal and human health. This review assesses the impact of chemical and biological contaminants (virus and bacteria) on viruses including its life cycle, survival, mutations, loads and titers, shedding, transmission, infection, re-assortment, interference, abundance, viral transfer between cells, and the susceptibility of the host to viruses. It summarizes the sources of environmental contaminants, interactions between contaminants and viruses, and methods used to mitigate such interactions. Overall, this review provides a perspective of environmentally co-occurring contaminants on animal viruses that would be useful for future research on virus-animal-human-ecosystem harmony studies to safeguard human and animal health.


Subject(s)
Air Pollutants , Environmental Pollutants , Pesticides , Viruses , Water Pollutants, Chemical , Animals , Humans , Environmental Pollutants/toxicity , Air Pollutants/toxicity , Microplastics , Plastics , Environmental Monitoring/methods , Ecosystem , Pesticides/toxicity , Anti-Bacterial Agents , Bacteria , Water Pollutants, Chemical/chemistry
8.
Poult Sci ; 102(12): 103105, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852050

ABSTRACT

In the early stages of embryonic development, a precise and strictly controlled hierarchy of gene expression is essential to ensure proper development of all cell types and organs. To better understand this gene control process, we constructed a small RNA library from 1- to 5-day-old chick embryos, and identified 2,459 miRNAs including 827 existing, 695 known, and 937 novel miRNAs with bioinformatic analysis. There was absolute high expression of a number of miRNAs in each stage, including gga-miR-363-3p (Em1d), gga-miR-26a-5p (Em2d and Em3d), gga-miR-10a-5p (Em4d), and gga-miR-199-5p (Em5d). We evaluated enriched miRNA profiles, identifying VEGF, Insulin, ErbB, MAPK, Hedgehog, TLR and Hippo signaling pathways as primary regulatory mechanisms enabling complex morphogenetic transformations within tight temporal constraints. Pathway analysis revealed miRNAs as pivotal nodes of interaction, coordinating cascades of gene expression critical for cell fate determination, proliferation, migration, and differentiation across germ layers and developing organ systems. Weighted Gene Co-Expression Network Analysis (WGCNA) generated hub miRNAs whose modular connections spanned regulatory networks, including: gga-miR-181a-3p (blue module), coordinating immunegenesis and myogenesis; gga-miR-126-3p (brown module), regulating vasculogenesis and angiogenesis; gga-miR-302c-5p (turquoise module), enabling pluripotency and self-renew; and gga-miR-429-3p (yellow module), modulating neurogenesis and osteogenesis. The findings of this study extend the knowledge of miRNA expression in early embryonic development of chickens, providing insights into the intricate gene control process that helps ensure proper development.


Subject(s)
Chickens , MicroRNAs , Chick Embryo , Animals , Chickens/genetics , Chickens/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation , Gene Expression Profiling/veterinary , Embryonic Development/genetics
9.
Poult Sci ; 102(12): 103117, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852056

ABSTRACT

Adenovirus serves as an excellent viral vector and is employed in vector vaccine research. Duck hepatitis A virus type 1 (DHAV1) and duck adenovirus type 3 (DAdV3) cause significant economic losses in the Chinese duck industry. In this study, we found an excellent exogenous gene insertion site in DAdV3 genome of CH-GD-12-2014 strain, within 3 intergenic regions (IGR). Subsequently, we generated a recombinant duck adenovirus named rDAdV3-VP1-188, which exhibits excellent replication characteristics and immunogenicity of DAdV3 and DHAV1. Animal experiments showed that rDAdV3-VP1-188 can provide 100% protection against the DAdV3 and 80% protection against DHAV1. These results showed that rDAdV3-VP1-188 could induce protection against DAdV3 and DHAV1 in ducks, thus indicating the feasibility of DAdV3 as a vector for the development of avian vector vaccines. These insights contribute to the further development of DAdV3 vectors and other adenovirus vectors.


Subject(s)
Hepatitis B Virus, Duck , Hepatitis Virus, Duck , Poultry Diseases , Animals , Hepatitis Virus, Duck/genetics , Ducks , Capsid Proteins/genetics , Adenoviridae/genetics , Chickens , Recombinant Proteins/genetics , Viral Proteins
10.
Poult Sci ; 102(12): 103144, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839164

ABSTRACT

Chicken chaphamaparvovirus (CkChpV) is a newly emerging pathogen that is currently prevalent in chickens with diarrhea symptoms. To diagnose CkChpV more conveniently and rapidly, this study established a multienzyme isothermal rapid amplification (MIRA) assay, with a reaction time of only 15 min and optimal reaction temperature of 38°C. In combination with the lateral flow dipstick assay, the CkChpV-MIRA assay can be completed within 20 min. We revealed that the detection limit of the MIRA assay using standard plasmids as templates was as low as 21.3 copies, and its sensitivity was 100 times higher than that of nested PCR. Moreover, the designed primer set and probe could only detect CkChpV specifically, and there was no cross reaction with avian nephritis virus, rotavirus, chicken parvovirus virus, Newcastle disease virus, and infectious bronchitis virus, which may cause diarrhea. These findings demonstrated that the CkChpV-MIRA assay established in this study is convenient, sensitive, and specific and does not require sophisticated equipment. It is more suitable for the detection of CkChpV in clinical samples.


Subject(s)
Chickens , Infectious bronchitis virus , Animals , Nucleic Acid Amplification Techniques/veterinary , Polymerase Chain Reaction/veterinary , Diarrhea/diagnosis , Diarrhea/veterinary , Sensitivity and Specificity
11.
Front Vet Sci ; 10: 1252628, 2023.
Article in English | MEDLINE | ID: mdl-37854096

ABSTRACT

Chaphamaparvovirus carnivoran2 (feline chaphamaparvovirus, FeChPV) is a novel feline parvovirus originally detected in Canadian cats in 2019, and it has also been identified in domestic cats in other nations. To evaluate the prevalence and genetic diversity of FeChPV in China, rectal swabs of pet cats from Henan, Guangdong, Anhui, Zhejiang, and Inner Mongolia provinces were collected. Of the 230 samples subjected to nested polymerase chain reaction, 6 (2.6%) tested positive for FeChPV. Although all positive samples were from cats with diarrhea, statistical analyses revealed no correlation between the presence of the virus and clinical symptoms (p > 0.05). Phylogenetic trees of nonstructural protein 1 (NS1) and capsid protein (VP1) demonstrated that these six new strains formed a major branch with other reference FeChPV strains and considerably differed from Chaphamaparvoviru carnivoran1. Moreover, recombination analysis revealed that the FeChPV strain CHN20201025, previously detected in a dog, was a recombinant and strains CHN200228 and CHN180917, identified in this study, were the closest relatives to the parental strains. The findings of this study and a previous study wherein FeChPV was detected in dogs suggest that FeChPV can propagate between species. Additionally, these findings indicate that the genetic diversity of FeChPV can provide an insight into the epidemiological status of FeChPV in China.

12.
Animals (Basel) ; 13(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37684973

ABSTRACT

To evaluate the recent evolution of CIAV in China, 43 flocks of chickens from the provinces of Henan, Jiangsu, Hubei, and Anhui were screened via polymerase chain reaction during 2020-2022. Of these, 27 flocks tested positive for CIAV nucleic acids, including 12 which were positive for other immunosuppression viruses. Additionally, 27 CIAV strains were isolated, and their whole genomes were sequenced. The AH2001 and JS2002 strains shared the highest identity at 99.56%, and the HB2102 and HB2101 strains shared the lowest identity at 95.34%. Based on the genome sequences of these strains and reference strains, a phylogenetic tree was constructed and divided into eight main branches. Most of the strains were grouped with the East Asian strains, whereas the HB2101 strain belonged to the Brazil and Argentina cluster. A recombination event was detected in multiple strains, in which AH2002 recombined from KJ728827/China/2014 (from Taiwan Province) and HN2203, and AH2202 recombined from KX811526/China/2017 (from Shandong Province) and HN2203. All the obtained strains had a highly pathogenic Gln amino acid site at position 394 of the VP1. Overall, our findings demonstrate the importance of CIAV monitoring and provide data that aid in understanding the evolution of CIAV.

13.
Microb Pathog ; 184: 106336, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683832

ABSTRACT

Pasteurella multocida.(PM) infection is a major cause of avian cholera, but the pathogenesis of the disease is unknown. The purpose of this study was to further understand the host response to infection by using a duck model of PM, 20 female ducks were divided into two groups (n = 10). One group was infected with PM, while the other served as an uninfected control group. The ducks were observed after infection and samples were collected for testing. In this study, we report the mechanism of PM-induced inflammation to further mediate apoptosis and autophagic signaling pathways in liver cells. Our results demonstrated that PM infection initially induces hemorrhagic and necrotic lesions in the liver tissue of duck, promoting inflammasome assembly and release, triggering inflammation. The TLR4/NF-κB axis activated and interacted with multiple inflammation-related proteins, including TNF-α and IL-1ß, which affected apoptosis and autophagy. Tumor necrosis factor induced hepatocyte apoptosis was implicated in a wide range of liver diseases; the release of TNF-α and activation with NF-κB further incite apoptotic pathways,such as Bax/BCL2/caspase to promote apoptotic genes APAF1, Bax, Caspase3, BCL-2, p53, and Cytc expression. Finally, PM-induced autophagy suppressed liver injury by promoting the Beclin-1, LC3B, p62, and mTOR. Thus, liver injury caused by PM via promoting autophagy was induced. In conclusion, we analyzed the liver injury of ducks infected with PM, and confirmed that inflammation appeared in the liver; this was followed by the intricate interplay between inflammation, apoptosis, and autophagy signaling pathways. The observed results provided a reference basis for studying pathogenic mechanisms of PM-host interactions.


Subject(s)
Pasteurella multocida , Animals , Female , Pasteurella multocida/metabolism , Ducks , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha , bcl-2-Associated X Protein , Liver/pathology , Inflammation/pathology , Autophagy , Apoptosis
14.
Front Vet Sci ; 10: 1218810, 2023.
Article in English | MEDLINE | ID: mdl-37601752

ABSTRACT

Cats are a potential source of genetic diversity for parvoviruses. Herein, 134 samples were collected from cats with clinical gastroenteritis and analyzed for the presence of viral DNA via polymerase chain reaction, which revealed 48 positive samples. Identity analysis of VP2 nucleotide sequences indicated that these 48 strains, belonging to feline panleukopenia virus (FPV) and canine parvovirus type-2 (CPV-2; including new CPV-2a and CPV-2c genotypes), shared 94.59-99.94% nucleotide identity with the reference strains. The FPV strain F8 (isolated from Vietnam) appeared to be a recombinant of strains HB2003 and JS1901, whereas the Chinese CPV-2b strain BM-(11) isolated in 2011 was believed to be a recombinant of strains AH2008 and JS1901. In phylogenetic tree analysis based on VP2 nucleotide sequences, all obtained FPV strains and most reference FPV strains were clustered together, except strain BJ-22, which originated from monkeys. Further, two new CPV-2a strains (AH2005 and AH2008) were close to the newly reported Chinese CPV-2a strains but were distant from the other CPV-2a strains, namely CPV-339 (from the United States) and K022 (from South Korea). Additionally, the FPV and CPV-2 strains had high mutation rates in the antigenic regions of the VP2 protein. According to model prediction of the CPV-VP2 protein, these mutations may cause changes in the tertiary structure of VP2. The findings of this study can be used to improve the pre-evaluation of vaccination efficacy against diseases caused by FPV and CPV-2 in domestic cats and understand their genotypic transmission and mutation trends.

15.
Vet Microbiol ; 284: 109821, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536160

ABSTRACT

While the presence of host cell proteins in virions and their role in viral life cycles have been demonstrated in various viruses, such characteristics have remained largely unknown in avian leukosis virus (ALV). To investigate whether this is the case in ALV, we purified high-integrity and high-purity virions from the avian leukosis virus subgroup J (ALV-J) and subjected them to proteome analysis using nano LC-MS/MS. This analysis identified 53 cellular proteins that are incorporated into mature ALV-J virions, and we verified the reliability of the packaged cellular proteins through subtilisin digestion and immunoblot analysis. Functional annotation revealed the potential functions of these proteins in the viral life cycle and tumorigenesis. Overall, our findings have important implications for understanding the interaction between ALV-J and its host, and provide new insights into the cellular requirements that define ALV-J infection.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Animals , Chickens , Avian Leukosis Virus/genetics , Tandem Mass Spectrometry/veterinary , Proteomics , Reproducibility of Results
17.
Poult Sci ; 102(8): 102776, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37302330

ABSTRACT

Novel Duck Reovirus (NDRV) that has been found throughout the world in waterfowl, and it has been extensively described. Here, we report the complete genome sequence of a NDRV strain isolated in China called NDRV YF10. This strain was collected from 87 samples with infected ducks in South Coastal Area. The NDRV genome consists of 23,419 bp. With the assistance of computer analysis, the promoter and terminator of each gene segment and 10 viral genes segments were identified, which encode polypeptides ranging from 98 to 1,294 amino acids. All gene fragments of this virus strain were determined and compared to previously reported strains, revealing genetic variation with similarity rates ranging from 96 to 99% for each gene segment. Each gene segment formed 2 host-associated groups, the waterfowl-derived reovirus and the avian-derived reovirus, except for the S1 gene segment, which was closely related to ARV evolution and formed a host-independent subcluster. This difference may be due to Avian Reovirus (ARV) evolving in a host-dependent manner. In order to evaluate the pathogenicity of YF10, a novel isolated strain of NDRV was tested in 2 types of ducks. It was observed that the YF10 isolated strain exhibits varying degrees of virulence, highlighting the potential risk posed to different types of ducks. In conclusion, our findings emphasize the importance of epidemiology studies, molecular characterization, and prevention of NDRV in waterfowl.


Subject(s)
Orthoreovirus, Avian , Poultry Diseases , Reoviridae Infections , Animals , Virulence , Chickens/genetics , Orthoreovirus, Avian/genetics , Whole Genome Sequencing/veterinary , China/epidemiology , Phylogeny , Poultry Diseases/epidemiology , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary
18.
Animals (Basel) ; 13(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37106845

ABSTRACT

In this study, we detected 12 duck and 11 goose flocks that were positive for duck hepatitis B virus (DHBV) using polymerase chain reaction and isolated 23 strains between 2020 and 2022 in China. The complete genomes of goose strains E200801 and E210501 shared the highest identity (99.9%), whereas those of strains Y220217 and E210526 shared the lowest identity (91.39%). The phylogenetic tree constructed based on the genome sequences of these strains and reference strains was classified into three major clusters: the Chinese branch DHBV-I, the Chinese branch DHBV-II, and the Western branch DHBV-III. Furthermore, the duck-origin strain Y200122 was clustered into a separate branch and was predicted to be a recombinant strain derived from DHBV-M32990 (belonging to the Chinese branch DHBV-I) and Y220201 (belonging to the Chinese branch DHBV-II). Additionally, preS protein analysis of the 23 DHBV strains revealed extensive mutation sites, almost half of which were of duck origin. All goose-origin DHBV contained the mutation site G133E, which is related to increased viral pathogenicity. These data are expected to promote further research on the epidemiology and evolution of DHBV. Continuing DHBV surveillance in poultry will enhance the understanding of the evolution of HBV.

19.
Poult Sci ; 102(5): 102583, 2023 May.
Article in English | MEDLINE | ID: mdl-37004250

ABSTRACT

Pasteurella multocida (P. multocida) is a zoonotic bacterium that can cause diseases in a variety of animals. It was divided into 5 serogroups, and serogroup A is mainly prevalent in avian hosts. We isolated a virulent and multidrug-resistant P. multocida strain from Guangdong duck liver and named it PMWSG-4 (GenBank accession no. CP077723.1). To understand the pathogenicity of this strain, the pathogenicity test was carried out with mice and ducks. The results showed that PMSWG-4 was highly pathogenic to ducks and mice, and the LD50 is 4.5 and 73 CFU, respectively. In order to study its genetic characteristics, pathogenicity, and relationship with the host, we performed a whole genome sequencing. The genome size of the isolated PMWSG-4 was 2.38 Mbp, with a G+C content of 40.3%, and coding 2,313 Coding DNA Sequence (CDS). The genome carries 162 potential virulence-associated genes, 32 different drug resistance phenotypes, 102 genes possibly involved in pathogen-host interaction, 2 gene island groups, and 4 prophages. In addition, we also found a new drug-resistant plasmid from strain PMWSG-4, named pXL001 (GenBank accession no. CP077724.1). After verified, the plasmid is a new plasmid carrying the floR florfenicol resistance gene. The whole genome is of great significance for further studying the pathogenesis and genetic characteristics of duck-derived P. multocida.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Animals , Mice , Pasteurella multocida/genetics , Pasteurella Infections/veterinary , Chickens/genetics , Plasmids/genetics , Genome, Bacterial , Ducks/genetics
20.
Poult Sci ; 102(6): 102641, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37004286

ABSTRACT

Owing to its high similarity to human hepatitis B virus (HBV), duck HBV (DHBV) is often used as an essential model for HBV research. Although intergenotypic recombination of HBV is common, it remains unclear whether the intergenotypic recombination of human HBV is exactly the same as that of DHBV. In this study, 119 serum samples of duck and goose were collected from 51 farms (29 duck and 22 goose farms) in the central and eastern regions of China. A total of 22 strains isolated from the 22 DHBV positive flock were sequenced. Genome sequence alignment revealed that the duck- and goose-origin strains shared the highest and lowest similarities (99.7 and 90.52%, respectively). The complete genomes of these DHBV and 31 reference strains were analyzed using phylogenetic methods and classified into 3 clusters, which corresponded to the previously identified DHBV-I, DHBV-II, and DHBV-III branches. Recombination analyses of the 53 DHBV genomes indicated 2 major intergenotypic recombination events with high confidence values. These recombination events occurred between the genotypes of the Chinese isolates Y180813HB (Chinese branch [DHBV-Ⅰ]) and E170101AH (Chinese branch [DHBV-Ⅱ]) and the Western isolate DHBV-XY (Western branch [DHBV-Ⅲ]), resulting in the emergence of 2 Chinese recombinant isolates Y190303HN and Y170101HB. In addition, 40% (2/5) goose-origin and 58.8% (10/17) duck-origin DHBV in this study harbored the mutation site of G133E in preS, which promote the pathogenicity of DHBV. This is the first study to report on the genome analysis and recombination characterization of DHBV isolated from Chinese geese. Further, continuous investigation and molecular identification of DHBV should be conducted to attract researchers' attention.


Subject(s)
Hepatitis B Virus, Duck , Humans , Animals , Ducks/genetics , Geese/genetics , Phylogeny , Chickens/genetics , Recombination, Genetic , DNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...